JSON-AI Config
- api.high_level.code_from_json_ai(json_ai)[source]
Autogenerates custom code based on the details you specified inside your JsonAI.
- Parameters:
json_ai (
JsonAI
) – AJsonAI
object- Return type:
str
- Returns:
Code (text) generate based on the
JsonAI
you created
- api.high_level.code_from_problem(df, problem_definition)[source]
- Parameters:
df (
DataFrame
) – The raw dataproblem_definition (
Union
[ProblemDefinition
,dict
]) – The manual specifications for your predictive problem
- Return type:
str
- Returns:
The text code generated based on your data and problem specifications
- api.high_level.json_ai_from_problem(df, problem_definition)[source]
Creates a JsonAI from your raw data and problem definition. Usually you would use this when you want to subsequently edit the JsonAI, the easiest way to do this is to unload it to a dictionary via to_dict, modify it, and then create a new object from it using lightwood.JsonAI.from_dict. It’s usually better to generate the JsonAI using this function rather than writing it from scratch.
- Parameters:
df (
DataFrame
) – The raw dataproblem_definition (
Union
[ProblemDefinition
,dict
]) – The manual specifications for your predictive problem
- Return type:
JsonAI
- Returns:
A
JsonAI
object generated based on your data and problem specifications
- api.high_level.predictor_from_code(code)[source]
- Parameters:
code (
str
) – ThePredictor
’s code in text form- Return type:
PredictorInterface
- Returns:
A lightwood
Predictor
object
- api.high_level.predictor_from_json_ai(json_ai)[source]
Creates a ready-to-train
Predictor
object based on the details you specified inside your JsonAI.- Parameters:
json_ai (
JsonAI
) – AJsonAI
object- Return type:
PredictorInterface
- Returns:
A lightwood
Predictor
object
- api.high_level.predictor_from_problem(df, problem_definition)[source]
Creates a ready-to-train
Predictor
object from some raw data and aProblemDefinition
. Do not use this if you want to edit the JsonAI first. Usually you’d want to next train this predictor by calling thelearn
method on the same dataframe used to create it.- Parameters:
df (
DataFrame
) – The raw dataproblem_definition (
Union
[ProblemDefinition
,dict
]) – The manual specifications for your predictive problem
- Return type:
PredictorInterface
- Returns:
A lightwood
Predictor
object
- api.high_level.predictor_from_state(state_file, code=None)[source]
- Parameters:
state_file (
str
) – The file containing the pickle resulting from callingsave
on aPredictor
objectcode (
Optional
[str
]) – ThePredictor
’s code in text form
- Return type:
PredictorInterface
- Returns:
A lightwood
Predictor
object